添加算法

命令: algorithm

算法添加分类两类,本地和远程,用 --help 命令可看到有以下子命令 local remote

anyctl add algorithm --help
Usage: anyctl add algorithm [OPTIONS] COMMAND [ARGS]...

    Add local or remote algorithm to local Anylearn project.

Options:
    --help  Show this message and exit.

Commands:
    local   Add local algorithm to current project.
    remote  Add remote algorithm by ID to current project.

添加本地算法

命令: local

参数及缩写

是否必须

默认值

说明

name

True

算法名称

--dir

True

本地算法文件夹(绝对路径)

--entrypoint-training

True

启动训练的入口命令

--output-training

True

训练输出模型的相对路径(相对于算法目录)

使用示例:

anyctl add algorithm local anyctl_algo --dir D:\anyctl-test\resource\cnn --entrypoint-training "python fashion_mnist.py" --output-training anyctl_algo_result

运行后会有以下输出:

[SUCCESS] ADDED  #提示算法添加成功

此时我们用 anyctl config ls 查看配置项可以看到算法信息已经有了:

remote:
    host:
    username:
    password:
project:
    id:
    name: anyctl_project
    description: A project created by anylearn ctl.
algorithms:
    anyctl_algo:
        id:
        name: anyctl_algo
        description:
        visibility: 3
        train_params: []
        follows_anylearn_norm: false
        entrypoint_training: python fashion_mnist.py
        output_training: anyctl_algo_result
datasets: {}
path:
    algorithm:
        anyctl_algo: D:\anyctl-test\resource\cnn
    dataset: {}

添加远程算法

我们除了添加本地算法以外还可以添加已经上传到后端的算法,只需要知道后端算法ID即可。

命令: remote

参数及缩写

是否必须

默认值

说明

id

True

远程算法ID

使用示例:

anyctl add algorithm remote ALGOxxx

如果需要配置远程地址和用户信息请参考 远程地址和用户设置

运行后会有以下输出:

[SUCCESS] ADDED  #提示算法添加成功

此时我们用 anyctl config ls 查看配置项可以看到远程算法信息已经有了:

...
algorithms:
    anyctl_algo:
        id:
        name: anyctl_algo
        description:
        visibility: 3
        train_params: []
        follows_anylearn_norm: false
        entrypoint_training: python fashion_mnist.py
        output_training: anyctl_algo_result
    cli_example_algo:  #远程算法信息
        id: ALGOxxx
        name: cli_example_algo
        description: SDK_QUICKSTART
        visibility: 3
        train_params:
        - name: dataset
          type: dataset
          suggest: 1
        - name: dataset
          type: dataset
          suggest: 1
        - name: model_path
          alias: ''
          description: ''
          type: model
          suggest: 1
        follows_anylearn_norm: false
        entrypoint_training: python fashion_mnist.py
        output_training: model-output
datasets: {}
path:
    algorithm:
        anyctl_algo: D:\anyctl-test\resource\cnn
        cli_example_algo:
    dataset: {}