添加算法 ========= .. contents:: 本节目录 :depth: 2 命令: ``algorithm`` 算法添加分类两类,本地和远程,用 ``--help`` 命令可看到有以下子命令 ``local`` ``remote`` : .. code-block:: shell anyctl add algorithm --help .. code-block:: shell Usage: anyctl add algorithm [OPTIONS] COMMAND [ARGS]... Add local or remote algorithm to local Anylearn project. Options: --help Show this message and exit. Commands: local Add local algorithm to current project. remote Add remote algorithm by ID to current project. 添加本地算法 --------------- 命令: ``local`` +---------------------------+----------+-------------+---------------------------------------------------------+ | 参数及缩写 | 是否必须 | 默认值 | 说明 | +===========================+==========+=============+=========================================================+ | name | True | | 算法名称 | +---------------------------+----------+-------------+---------------------------------------------------------+ | -\-dir | True | | 本地算法文件夹(绝对路径) | +---------------------------+----------+-------------+---------------------------------------------------------+ | -\-entrypoint-training | True | | 启动训练的入口命令 | +---------------------------+----------+-------------+---------------------------------------------------------+ | -\-output-training | True | | 训练输出模型的相对路径(相对于算法目录) | +---------------------------+----------+-------------+---------------------------------------------------------+ 使用示例: .. code-block:: shell anyctl add algorithm local anyctl_algo --dir D:\anyctl-test\resource\cnn --entrypoint-training "python fashion_mnist.py" --output-training anyctl_algo_result 运行后会有以下输出: .. code-block:: shell [SUCCESS] ADDED #提示算法添加成功 此时我们用 ``anyctl config ls`` 查看配置项可以看到算法信息已经有了: .. code-block:: shell remote: host: username: password: project: id: name: anyctl_project description: A project created by anylearn ctl. algorithms: anyctl_algo: id: name: anyctl_algo description: visibility: 3 train_params: [] follows_anylearn_norm: false entrypoint_training: python fashion_mnist.py output_training: anyctl_algo_result datasets: {} path: algorithm: anyctl_algo: D:\anyctl-test\resource\cnn dataset: {} 添加远程算法 --------------- 我们除了添加本地算法以外还可以添加已经上传到后端的算法,只需要知道后端算法ID即可。 命令: ``remote`` +---------------------------+----------+-------------+---------------------------------------------------------+ | 参数及缩写 | 是否必须 | 默认值 | 说明 | +===========================+==========+=============+=========================================================+ | id | True | | 远程算法ID | +---------------------------+----------+-------------+---------------------------------------------------------+ 使用示例: .. code-block:: shell anyctl add algorithm remote ALGOxxx 如果需要配置远程地址和用户信息请参考 :ref:`set_host_user_info` 。 运行后会有以下输出: .. code-block:: shell [SUCCESS] ADDED #提示算法添加成功 此时我们用 ``anyctl config ls`` 查看配置项可以看到远程算法信息已经有了: .. code-block:: shell ... algorithms: anyctl_algo: id: name: anyctl_algo description: visibility: 3 train_params: [] follows_anylearn_norm: false entrypoint_training: python fashion_mnist.py output_training: anyctl_algo_result cli_example_algo: #远程算法信息 id: ALGOxxx name: cli_example_algo description: SDK_QUICKSTART visibility: 3 train_params: - name: dataset type: dataset suggest: 1 - name: dataset type: dataset suggest: 1 - name: model_path alias: '' description: '' type: model suggest: 1 follows_anylearn_norm: false entrypoint_training: python fashion_mnist.py output_training: model-output datasets: {} path: algorithm: anyctl_algo: D:\anyctl-test\resource\cnn cli_example_algo: dataset: {}