# ValueRepair

# 函数简介

本函数用于对时间序列的数值进行修复。目前,本函数支持两种修复方法:Screen是一种基于速度阈值的方法,在最小改动的前提下使得所有的速度符合阈值要求;LsGreedy是一种基于速度变化似然的方法,将速度变化建模为高斯分布,并采用贪心算法极大化似然函数。

函数名: VALUEREPAIR

输入序列: 仅支持单个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE。

参数:

  • method:修复时采用的方法,取值为'Screen'或'LsGreedy'。在缺省情况下,使用Screen方法进行修复。
  • minSpeed:该参数仅在使用Screen方法时有效。当速度小于该值时会被视作数值异常点加以修复。在缺省情况下为中位数减去三倍绝对中位差。
  • maxSpeed:该参数仅在使用Screen方法时有效。当速度大于该值时会被视作数值异常点加以修复。在缺省情况下为中位数加上三倍绝对中位差。
  • center:该参数仅在使用LsGreedy方法时有效。对速度变化分布建立的高斯模型的中心。在缺省情况下为0。
  • sigma :该参数仅在使用LsGreedy方法时有效。对速度变化分布建立的高斯模型的标准差。在缺省情况下为绝对中位差。

输出序列: 输出单个序列,类型与输入序列相同。该序列是修复后的输入序列。

提示: 输入序列中的NaN在修复之前会先进行线性插值填补。

# 使用示例

# 使用Screen方法进行修复

method缺省或取值为'Screen'时,本函数将使用Screen方法进行数值修复。

输入序列:

+-----------------------------+---------------+
|                         Time|root.test.d2.s1|
+-----------------------------+---------------+
|2020-01-01T00:00:02.000+08:00|          100.0|
|2020-01-01T00:00:03.000+08:00|          101.0|
|2020-01-01T00:00:04.000+08:00|          102.0|
|2020-01-01T00:00:06.000+08:00|          104.0|
|2020-01-01T00:00:08.000+08:00|          126.0|
|2020-01-01T00:00:10.000+08:00|          108.0|
|2020-01-01T00:00:14.000+08:00|          112.0|
|2020-01-01T00:00:15.000+08:00|          113.0|
|2020-01-01T00:00:16.000+08:00|          114.0|
|2020-01-01T00:00:18.000+08:00|          116.0|
|2020-01-01T00:00:20.000+08:00|          118.0|
|2020-01-01T00:00:22.000+08:00|          100.0|
|2020-01-01T00:00:26.000+08:00|          124.0|
|2020-01-01T00:00:28.000+08:00|          126.0|
|2020-01-01T00:00:30.000+08:00|            NaN|
+-----------------------------+---------------+

用于查询的SQL语句:

select valuerepair(s1) from root.test.d2

输出序列:

+-----------------------------+----------------------------+
|                         Time|valuerepair(root.test.d2.s1)|
+-----------------------------+----------------------------+
|2020-01-01T00:00:02.000+08:00|                       100.0|
|2020-01-01T00:00:03.000+08:00|                       101.0|
|2020-01-01T00:00:04.000+08:00|                       102.0|
|2020-01-01T00:00:06.000+08:00|                       104.0|
|2020-01-01T00:00:08.000+08:00|                       106.0|
|2020-01-01T00:00:10.000+08:00|                       108.0|
|2020-01-01T00:00:14.000+08:00|                       112.0|
|2020-01-01T00:00:15.000+08:00|                       113.0|
|2020-01-01T00:00:16.000+08:00|                       114.0|
|2020-01-01T00:00:18.000+08:00|                       116.0|
|2020-01-01T00:00:20.000+08:00|                       118.0|
|2020-01-01T00:00:22.000+08:00|                       120.0|
|2020-01-01T00:00:26.000+08:00|                       124.0|
|2020-01-01T00:00:28.000+08:00|                       126.0|
|2020-01-01T00:00:30.000+08:00|                       128.0|
+-----------------------------+----------------------------+

# 使用LsGreedy方法进行修复

method取值为'LsGreedy'时,本函数将使用LsGreedy方法进行数值修复。

输入序列同上,用于查询的SQL语句如下:

select valuerepair(s1,'method'='LsGreedy') from root.test.d2

输出序列:

+-----------------------------+-------------------------------------------------+
|                         Time|valuerepair(root.test.d2.s1, "method"="LsGreedy")|
+-----------------------------+-------------------------------------------------+
|2020-01-01T00:00:02.000+08:00|                                            100.0|
|2020-01-01T00:00:03.000+08:00|                                            101.0|
|2020-01-01T00:00:04.000+08:00|                                            102.0|
|2020-01-01T00:00:06.000+08:00|                                            104.0|
|2020-01-01T00:00:08.000+08:00|                                            106.0|
|2020-01-01T00:00:10.000+08:00|                                            108.0|
|2020-01-01T00:00:14.000+08:00|                                            112.0|
|2020-01-01T00:00:15.000+08:00|                                            113.0|
|2020-01-01T00:00:16.000+08:00|                                            114.0|
|2020-01-01T00:00:18.000+08:00|                                            116.0|
|2020-01-01T00:00:20.000+08:00|                                            118.0|
|2020-01-01T00:00:22.000+08:00|                                            120.0|
|2020-01-01T00:00:26.000+08:00|                                            124.0|
|2020-01-01T00:00:28.000+08:00|                                            126.0|
|2020-01-01T00:00:30.000+08:00|                                            128.0|
+-----------------------------+-------------------------------------------------+